
Learning to Factorize and Relight a City
Supplemental Material

“plus ça change, plus c’est la même chose”
(Jean-Baptiste Alphonse Karr)

1
1 Gamma Correction: . 2
2 Method . 3

2.1 Sun Azimuth Encoder . 4
2.2 Panoramic Spatial Transformer . 5
2.3 Generator Architecture: . 6
2.4 Bi-color shading . 7
2.5 Basis Spline Alignment . 8
2.6 Loss Details . 9
2.7 Training Details . 12

3 Additional Results . 12
3.1 Sun Azimuth Evaluation . 12
3.2 Alignment Results: . 13
3.3 Beyond NYC . 13

4 Applications . 14
4.1 Transferring only Lighting Context . 14
4.2 Editing Scene Geometry . 14
4.3 Hyperlapse Synthesis . 15

5 Failure Cases . 15

2 Liu et al.

1 Gamma Correction:

The intrinsic images formula factorize an image I into reflectance R and shading
S components.

I = R× S (1)

Where I is assumed to be a linear RGB intensity scale. Ideally these linear
RGB images should come from high-dynamic range (HDR) exposures because
they capture the full spectrum of illumination which are factored into the shading
component. However many images, including Google Street View panoramas,
are tone-mapped and encoded in the standard RGB (sRGB) colorspace. The
tone-mapping procedure involves clipping exposures and gamma correction such
that values above the clip are visualized as over-exposed pixels. The gamma
correction relates sRGB and linear RGB pixels:

IsRGB = AIγ (2)

Where A = 1 and γ = 1
2.2 typically.

Because tone-mapping irrecoverably loses information about the original
lighting, we simply assume the overexposed linear RGB pixels recovered from
reversing the gamma correction sRGB are the true brightness. In practice this
suffices for intrinsic images as seen by Weiss’s MLE Intrinsics [14], Zhou et al.
[16], and Li and Snavely’s BigTime [7] which do gamma “uncorrection” by scaling
the sRGB image to take values between [0, 1] and then raising the pixels to the
power 1

γ .
However one common trick with manipulating intrinsic images is to work

in log-space. More specifically one can take the intrinsic image formula (Eq. 3)
and apply the log function to linearize the relationship between log-shading and
log-reflectance.

Our observation is that by replacing linear RGB input with the sRGB, the
intrinsic image formula becomes:

1

γ
log(IsRGB) = log(R) + log(S) (3)

In log-space, the log-reflectance and log-shading components computed with
sRGB and linear RGB are related by a scale 1

γ . In our system, the SPADE
decoder G is a learned convolutional neural network that outputs log-shading.
Therefore the scale factor 1

γ can be trivially learned by the convolutional filter
weights of the last layer. This has been confirmed as we trained a model using
linear RGB and 1

γ = 2.2 and achieved comparable results to ones trained with
sRGB. All results shown in submission and main paper have been trained with
sRGB inputs without extra handling for gamma correction.

One potential problem comes from attempting to decompose images with
unconventional gamma curves. We show in Fig. 1 an HDR capture from the
Laval Outdoor HDR dataset [2] that has been tone-mapped with various gamma
values. While our model performs well near the typical parameter γ = 1

2.2 , the

Learning to Factorize and Relight a City Supplemental Material 3

Fig. 1. We show different gamma curves applied to an original HDR panorama capture
from the Laval Outdoor HDR dataset [2, ?]. The standard gamma correction is computed
with 1

γ
= 2.2. For each different value of gamma, we show our model factorizing the

resulting gamma corrected image. As shown by the degradation of performance at
1
γ

= 1.4, our model is sensitive to decomposing images with unconventional gamma
correction.

decomposition degrades especially at γ = 1
1.4 . This is an out-of-distribution

training problem as most images trained by the model have been tonemapped
with the standard γ = 1

2.2 . While training with linear RGB images would resolve
any ambiguities between different gamma curves, the fundamental problem is
that the gamma parameter for arbitrary sRGB images is unknown and assuming
γ = 1

2.2 is a best approximation for most images, in which case the correction is
learned by the decoder.

2 Method

We show in Fig. 2 a diagram of our encoder ΦE , Φϕ, ΦL. The two illumination
descriptor encoders have a shared encoder weights as they are designed to extract
transient effects.

4 Liu et al.

Fig. 2. Our three encoder architectures. The two encoders that output our illumination
descriptor, azimuth and lighting context, share the first few convolutional layers before
diverging into a horizontal fully-convolutional encoder and a variational encoder.

2.1 Sun Azimuth Encoder

Correction: In the main paper we mistakenly say that ϕ is a 40-way classification
problem. This is a typo and we intended to say that ϕ is a 60-way classification
problem.

Recall that as a pre-process, all training panoramas are oriented with a
consistent heading—the center column faces the same 3D world direction, and
the horizon corresponds to the center scanline. In this format, cyclic horizontal
translations of the panorama correspond to changing the heading in world
coordinates. For example, if a north-facing panorama is shifted by half the length
of the image, the resulting panorama will be the same scene, but facing south.

Given the shift-equivariant property of standard convolutions [15], and the
equivalence between shifts and rotations for horizon-levelled panoramas, standard
convolution operations on panoramas are 3D-yaw-rotation-equivariant. This
implies that sun azimuth angle can only be estimated relative to the heading of
the panoramas, as opposed to predicting an absolute cardinal direction of the
sun.

In order to preserve equivariance we must use a fully convolutional encoder
network as any global pooling layers would affect the spatial relationship between

Learning to Factorize and Relight a City Supplemental Material 5

Fig. 3. Our Panoramic Spatial Transformer is a novel representational technique for
encoding and decoding 1D-rotations (formally SO(2) groups). In (a) we show an input
panorama and the output ϕ of our horizontally fully convolutional encoder Φϕ. The
red line denotes the canonical heading which defines the zero-heading of ϕ’s coordinate
system. We assume the canonical heading to always be the center of the panorama.
In (b) we visualize the top-down view of the distribution as well as the definition of ϕ̄
which is the circular average of the azimuth distribution ϕ. In (c) we take the geometry
representation E and apply a horizontal spatial transformer parameterized by −ϕ which
rotates E to the orientation where the sun’s position is at the canonical heading. Finally
in (d) we show the generated shading with the sun-normalized geometry. To restore the
original heading of the image we apply a spatial transformer parameterized by ϕ̄ to get
the shading of the input panorama.

input and output and result in a network that is invariant (rather than equivariant)
to rotations.

The output of the fully convolutional sun azimuth classification network is of
dimension 12× 60 where 60 is the number of angle classes and the first dimension
can be pooled over as it is does not encode angle information to obtain a 1× 60
distribution over angles. To this end, we learn a 12× 1 learned vertical pooling
layer rather than use a fixed max or average pooling operation. The full encoder
is thus a horizontally fully-convolutional network, Φϕ.

2.2 Panoramic Spatial Transformer

We wish to rotate the geometry representation by the predicted sun azimuth
such that the sun is always at the same angle (e.g. head on). However, the
softmax distribution, ϕ, over the 60 sun azimuth classification buckets spanning
[−π, π] as is described above in Section 2.1 is not differentiable. Luckily, circular
angles are ordinal rather than categorical in nature. Therefore, instead of taking
a softmax we can compute ϕ̄, the circular average which is the expected value of
this distribution, in a differentiable way:

ϕ̄ = arctan

(
Eα′∼ϕ[sin(α′)]

Eα′∼ϕ[cos(α′)]

)
(4)

We note that the panoramic rotation operator describes a more general layer
that excels at discovering the effects of 1D-rotations. In Fig. 3(a) we show an input

6 Liu et al.

Fig. 4. The decoding generator consists of a Panoramic Spatial Transformer, a SPADE
Residual Generator and bi-color shading estimation.

panorama its azimuth distribution produced by Φϕ. We define the coordinate
system of ϕ relative to a consistent direction across all training examples. This
direction is called the canonical heading and is indicate by the red line. The
canonical heading defines the 0◦ coordinate with the negative angles to −π
represent orientations to the left of the canonical heading. Fig. 3(b) shows a polar
plot of the distribution of sun azimuth orientations. ϕ̄, visualized as the arrow, is
about −70◦ with respect to the canonical heading.

We can use −ϕ̄ to parameterize a 1D spatial transformer that rotates the
coordinate system to one that is invariant to sun-position as shown in Fig. 3(c).
This orientation is called sun-normalization because after rotating by −ϕ̄, all
geometry representations are oriented with a consistent sun azimuth at 0◦. Our
insight is that the decoder’s job is simplified if the sun is always in the same
position. In Fig. 3(d) we show a decoded shading that is sun-normalized. To
restore the original heading we use the 1D spatial transformer again parameterized
by ϕ̄.

By normalizing out sun azimuth, our downstream networks become invariant
to sun azimuth, thereby teasing out a disentanglement between the orientation of
the sun (ϕ̄) and orientation of buildings in the world. Note that this must be used
in conjunction with modifications for breaking rotation equivariance described in
the next section.

2.3 Generator Architecture:

Our generator is derived from Park et al. [11] SPADE residual blocks. More
specifically we use noise sampled from the parameters estimated by variational
lighting context encoder and condition using SPADE residual blocks described
in [11] supplemental. The SPADE residual blocks are conditioned with the
azimuth-rotated geometry code described above.

Breaking rotation equivariance. Even though we have rotated our geometry
code, the equivariance property described in Sec. 2.1, means that the decoder G
will produce the exact same activations as the unrotated version except shifted
by the same amount as the original rotation. Therefore we want to break the

Learning to Factorize and Relight a City Supplemental Material 7

rotational equivariance property to allow the network to learn to synthesize
different activations for different rotations of the same geometry representations.

To do this, we take one period of a sine and cosine signal from [−π, π], sample
960 times (or the width of our panoramas), and tile the sampled signal vertically
into an image that matches the height of our panoramas. The two images, shown
in Fig. 5(SPADE Condition), form a (320, 960, 2) tensor which we resize and
concatenate appropriately to the geometry code when its fed into the SPADE
conditioning module. While breaking rotational equivariance is important, the
implementation of the cosine and sine image can be effectively ignored because
it is packaged and self-contained within our SPADE Generator which is NO
LONGER rotationally equivariant. While we have described an intuitive way
to break rotational equivariance, there exists other ways like a learned constant
that is concatenated in place of the cosine/sine images.

We show in Fig. 4 the full generator diagram from factors to log-shading
output. For information about the intermediate stages that form the bi-color
module, please see refer to Sec. 2.4.

Misc. We modify parts of SPADE to account for its new data and usage. We use
panorama padding which involves padding with image content from the opposite
side of the tensor in the width dimension. To ensure that gradients flow well
through the SPADE’s condition input, we use average-pooling for downsampling
and nearest-neighbors for upsampling. Spectral normalization [10] is used in both
the main pathway and the convolutions embedded in the SPADE normalization
layers. For explicit details about implementation please see Fig. 5.

2.4 Bi-color shading

Our bi-color shading is very similar to Sunkavalli et al. [12] proposed factorized
timelapse model. In Sunkavalli etal ’s work, they decompose a spatio-temporal
timelapse into a sky component, the scene illuminated by diffused sky-radiation,
a binary shadow volume, and the scene illuminated by the sun. They alternate
minimizing each component to arrive at the final decomposition for a given
timelapse. While their results show a very good decomposition, their method
suffers from the same issues with intrinsic images in that they cannot transfer
appearances across space.

We show in Fig. 4 the different intermediate stages that are used to produce
our bi-color shading output. Our SPADE generator G takes in the factors and
outputs the shading intensity ∈ RH,W,1 which is equivalent to the classic intrinsic
image assumption of gray-scale shading. In addition, G also estimates two global
colors (c1, c2) ∈ R3 and a per-pixel mixing weight M ∈ RH,W . c1 and c2 are
learned estimates of sunlight and skylight parameters; typically our model predicts
various shades of blue and yellow-orange. These two are mixed using M which is
most similar to Sunkavalli etal ’s shadow volume. In particular each pixel in M
estimates the ratio of sunlight and skylight visible from the scene-point in the
world. Our mixed colored representation from combining c1, c2, and M defines
the shading color of the world. Our final outdoor illumination shading is like so:

8 Liu et al.

Fig. 5. We show our decoder and discriminator’s setup. On left, our decoder uses
spectral normalization [10] fully-connected layers to decode global illuminants c1 and
c2. SPADE Residual Blocks [11] are used to generate the Mask and Shading Intensity.
Please refer to [11] for more information about SPADE Residual Blocks. On right we
show our PatchGAN discriminator which outputs real and fake logits.

log(S) + c1 ∗M + c2 ∗ (1−M) (5)

In Fig. 6 we show qualitative difference between a mono-color ablation and
the full model (bi-color). Note that cast shadow, especially in the third column,
are removed from the bi-color reflectance. On the other hand, because the mono-
color is incapable of modeling shadow volumes, they leave a strong blue tint
behind. The bi-color shading also removes the diffuse sky radiation from the
reflectance, leaving a clean plate background that is suitable for relighting as
shown in Fig. 7. The residual blue in the mono-color shading model degrades the
swap reconstruction when transferring illumination from a different scene.

2.5 Basis Spline Alignment

We propose a novel procedure for dealing with alignment based on image congeal-
ing [3]. We find that alignment is an important problem to solve for producing
high quality reflectances. We use these reflectances directly when synthesizing re-
lighting scenes, as such alignment directly impacts the quality of our synthesized
images.

We’d like to re-iterate that while 3D reconstruction approaches like Martin-
Brualla et al. [8] and Meshry et al. [9] also have to solve for misalignment in
input images, their approaches require many hours and hundreds of images to
compute camera poses and dense 3D-reconstruction. Further these methods have

Learning to Factorize and Relight a City Supplemental Material 9

Fig. 6. We compare the benefits of the mono-color and bi-color shading assumption.
We can see that the mono-color assumption fails to remove shadows completely. There
are difficulties with white-balancing as well.

no way to factorize completely unseen scenes. Our proposal enables all of this.
We can deal with alignment from a few images and our encoder-decoder allows
us to estimate intrinsic factors of unseen scenes from a single image.

Our approach initializes a set of free variables corresponding to control points
Θ ∈ R[8,32,2] per image. The control points specify an 8, 32 grid of horizontal and
vertical deformations over an image. These deformations define a forward flow
of pixels at the location of the 8, 32 grid points in the image. To get a full and
smoothly changing flow-field, we use a basis-spline (B-spline) to interpolate pixel
deformations densely. We can apply the flow-field to warp an image. By warping
all images in a stack using their respective Θ, we get an aligned stack.

We use a cubic B-spline surface interpolation to compute the dense flow-field.
The basis-spline surface interpolation is a generalization of the 1D B-spline to
2 dimensions corresponding to the height and width of control points. This is
not related to the fact that we are learning horizontal and vertical deformations.
Each horizontal and vertical deformation are independently computed B-spline
surface interpolations.

Because the B-spline is differentiable, we can pass gradients through the
B-spline and into the control points. While there exist other family of splines and
differentiable warping (thin-plate splines for example), we found that the memory
footprint and locally-constrained behavior of control points made B-splines the
best candidate for interpolation.

We initialize the control point with noise, however the noise is small such
that the initialization is essentially zero. This amounts to initializing the basis
spline interpolation with the identity deformation.

2.6 Loss Details

Our primary loss operates on stacks of reflectance and shading outputs produced
by our factorization model. Given a timelapse stack I, we factorize the frames to
their reflectance stack R and shading stack S.

10 Liu et al.

Fig. 7. For synthesizing new scenes by swapping lighting context, the bi-color shading
model is a necessary improvement. The left column indicates the source weather we
wish to copy from. The middle column shows a reconstruction under the mono-color
shading. The right column is our bi-color shading. The mono-color fails to correctly
synthesize any of the scenes correctly, partly because the reflectance captured is one of
a blue sky instead of gray.

Reflectance Consistency Loss. Our reflectance consistency loss enforces the
scene albedo to be consistent across time. We do this by minimizing the L1

inconsistency between every pair of reflectance frames. This loss is used to jointly
update alignment parameters and factorization.

LRC =

8∑
i

8∑
j=i+1

||Ri −Rj ||1 (6)

White light penalty. In intrinsic images, there exists a fundamental ambiguity
between log-reflectance and log-shading:

log(I) = (log(R)− k) + (log(S) + k) (7)

where k is an arbitrary channel-shift ambiguity of log-shading that affects
the visualization of the components but does not affect the resynthesis of the
image. Typically this arbitrary shift plays a minor part in the decomposition
as the expressiveness of log(S) is limited to be gray-scale intensity so applying
normalization to visualize the components ignores the shift of k in log-reflectance
and log-shading. Additionally LRC, and most approaches in intrinsic images, use
shift invariant losses so k cannot influence the optimization.

Learning to Factorize and Relight a City Supplemental Material 11

While we would normally not worry about this, our generator’s bi-color
shading is expressive enough to produce colored-components c1, c2. This means
that k ambiguity is an unconstrained color shift. For instance, if we pick an
arbitrary color shift (in this case red) to be k = εred, the generator could learn
to predict global color illuminants that have been red-shifted by εred. The result
would be a log-shading output that appears red and log-reflectance output that
appears cyan. When recombined though the ambiguity cancels and we get a
regular image and an identical loss because LRC is invariant to k.

For visualization purposes, we impose a white-light loss LWL that enforces
the average colored illumination c1, c2 across time to be white. This effectively
encourages the shading generator G to prefer solutions where the color shift
ambiguity k is white. As a result we get log-reflectance that appear illuminated
under white-light. We take the bi-color augmentation described in Sec. 2.4
c1 ∗M + c2 ∗ (1−M), denoted as shading color in Fig. 4, to be B ∈ R[8,H,W,3]

and Bi to be the bi-color component for frame i.

LWL =
∑
||

8∑
i

Bi||1 (8)

Misc loss. We adopt a standard GAN setup. We use a patch discrminator with

1 scale and 4 layers [4, 13]. Our patch discriminator’s only input is the stack
reconstruction pixels that have been synthesized from the average reflectance
and the predicted shading. Please refer to Fig. 5 for more detail.

We use a hinge adversarial loss LGAN. LGAN appropriately switches between
the following generator and discriminator loss when computing gradients of their
respective networks. X represent the real images, D(X) represents the discrimi-
nator logits, and F (X) represents the encoder-decoder stack reconstruction:

LDisc = max(1 +D(X), 0) + max(1−D(F (X)), 0) (9)

LGen = −D(F (X)) (10)

We also use a feature-matching loss LFM which guides the encoder-decoder
to produce images F (X) that are similar to X. This is done by matching the
intermediate activations of the discriminator between X and F (X). Let Di(∗)
refer to the activations of the i-th layer.

LFM =
∑
i

||Di(X)−Di(F (X))||1 (11)

Lastly we include a perceptual loss [5] LVGG which also guides the encoder-
decoder to produce images F (X) that are “perceptually” similar to the real
image X. This is enforced using L1 loss between real and generated samples’
VGG-19 features. We re-use the implementation from [1].

12 Liu et al.

Model Test-GSV Laval

Ours 0.806 (9.2°) 0.771 (9.6°)
Supervised Azimuth Encoder 0.864 (7.92°) 0.831 (9.3°)
Deep Outdoor Illumination [?] — N.A (4.59°)

Table 1. Estimating sun azimuth from
panoramas. We report the average cosine
similarity between prediction and ground
truth (higher is better). In parenthesis, the
median angular error (lower is better).

2.7 Training Details

We used V100 GPUs with asynchronous gradient updates over a total of 100, 000
stacks each consisting of 8 panoramic images.

Our training stacks are augmented by horizontally translating all their con-
stituent panoramas by the same amount after alignment warping, but before
decomposing. This is equivalent to randomly rotating the canonical heading and
prevents the model from overfitting to the natural pattern of the sun’s position
(e.g at higher latitudes in the northern hemisphere, the sun is typically not
observed in the geographically north part of the sky).

For both our factorization and discriminator update, we used the default
Adam [6] with learning rate 0.0001 and β1 = 0 which was found to work well in
SPADE [11]. For learning our warp parameters Θ, we used a lazy implementation
of Adam 1 that’s optimized for applying efficient sparse updates.

3 Additional Results

3.1 Sun Azimuth Evaluation

We evaluate the goodness of our unsupervised azimuth estimation module by
comparing our unsupervised estimates with the true azimuth heading on two
test datasets: GSV-TM and Laval Outdoor HDR [2]. The true azimuth for
GSV-TM is computed using solar angle equations from the GPS and date-
time metadata. Laval panoramas are annotated with azimuth estimated from
computing connected components of the brightest pixel.

In order to measure correctness in azimuth estimation, we compute the cosine
distance between the predicted and true azimuth angles. Because our azimuth
representation is an unsupervised embedding learned by a neural network, the
relationship between the output of the encoder and the ground truth sun azimuth
angle is ambiguous up to a constant rotation. Therefore, we estimate a rotation
of our azimuth representation over a validation set that maximizes the cosine
similarity between our finetuned rotated prediction and the real angle of the sun.

We show the full results in Table 1, comparing against a fully supervised
azimuth encoder as well as a supervised baseline method [?] on the Laval dataset.
We record the average cosine similarity and median angular error (shown in
parenthesis) between the prediction and ground truth.

Learning to Factorize and Relight a City Supplemental Material 13

Fig. 8. Additional alignment result. For each pair we show the unaligned average on left
and the output of our alignment algorithm on right. These alignments are computed at
test-time when the factorization weights are frozen. Given a stack we take ten gradient
descent optimization of alignment parameters Θ.

3.2 Alignment Results:

In Fig. 8 we show additional alignment on test stacks. The misaligned stacks
highlight the importance of solving alignment for producing high quality images.
While we proposed solving for alignment with the factorized reflectance, one
could choose to break the feedback loop and solve for alignment using the original
RGB pixels. This is equivalent to first solving for alignment as preprocessing to
the encoder-decoder.

We show in Fig. 9 that aligning on the original RGB image stack results in
poorer alignment than our proposed process. While we did not validate this, we
suspect that attempting RGB alignment on even smaller sized stack would result
in even more poor results.

3.3 Beyond NYC

Majority of our results were shown on imagery from the test set of NYC GSV-TM.
We briefly showed earlier that our factorization works for scenes beyond NYC
with intrinsic image decompositions of Paris, London, and Laval Outdoor HDR.

1 tf.contrib.opt.LazyAdamOptimizer

14 Liu et al.

Fig. 9. We show two versions of the basis-spline alignment process on the unaligned
stacks in the top row. The middle row shows our resulting alignment average after
optimizing for aligning the original RGB pixels. This is equivalent to breaking the
alignment-factorize loop by aligning the stacks as a pre-processing step. The bottom
row shows our full-model with the alignment-factorize loop. These examples show that
aligning with reflectance produces sharper building textures than aligning with RGB.
These examples were selected to highlight the discrepancy in alignment results, but
even for the median case there are many subtle misalignment problems that aren’t
immediately obvious.

We include additional decomposition results for each city and also San Fran-
cisco in Fig. 11. In addition to the decomposition from the main submission, we
also show a stack decomposition comparison with Weiss’s MLE Intrinsics [14]
and our model on stacks. In the stack decomposition, our full-model has a better
signal for removing moving objects like cars and people from both the reflectance
and geometry.

4 Applications

4.1 Transferring only Lighting Context

So far we have visualized transferring the whole illumination descriptor and
manipulating just the azimuth representation ϕ. To fully demonstrate disentan-
glement, we also show manipulating just the lighting context in Fig. 12(middle).
Here we show different scenes with different sun azimuth. For a row, we transfer
the same lighting context L while preserving the original sun azimuth. Note how
the same bright blue sky is synthesized, but the sun location matches the original
scene’s sun azimuth.

4.2 Editing Scene Geometry

We show the procedure of inserting objects into different scenes in Fig. 13. This
underlying process is how we can synthetically transplant buildings into new

Learning to Factorize and Relight a City Supplemental Material 15

Fig. 10. Additional results from main Fig. 6. In addition we also show a stack decom-
position comparison between our approach and Weiss’s MLE Intrinsics [14].

scenes. Additionally the newly synthesized geometry code forms a new scene for
which all previously defined factored transformations can be applied. We show
scene rotations of the newly spliced building on the attached webpage.

4.3 Hyperlapse Synthesis

We show a hyperlapse synthesis through a section of New York City. In particular
the original images often have uncontrollable changes in lighting due to images
coming from distinct capture times, resulting in a jarring experience. Using our
factorization method, we can normalize for lighting and drive smoothly through
Manhattan. Video of the original hyperlapse and adjusted one can be found on
the attached webpage.

5 Failure Cases

We show some common failure modes of our factorization in Fig. 15. For single
image decompositions, the single biggest source of failures results from poor
estimates of our scene descriptors (reflectance and geometry). In the first row, the

16 Liu et al.

Fig. 11. More decomposition on city scenes from beyond NYC. We show that our
factorization generalizes beyond location as shown by our results on London and San
Francisco.

single image decomposition struggles to correctly synthesize high-frequency shad-
ows cast by branches. This suggests two things: (1) that multiple views improve
the decomposition results by letting the network average out poor geometry and
reflectance estimates and (2) the nature of our compressed factorization forces
intricate shading interactions like branch shadows to be encoded in the scene
descriptor.

The next common failure mode is a result of ghosting of transient objects like
cars. While under our current factorization there’s no intuitive place to encode
cars because they represent changes in the underlying scene geometry that are
not permanent. The network learns to average out moving objects in reflectance
and attempts to best reconstruct them in the shading images, resulting in wispy
gray-scale cars. The second row shows examples of these ghost cars.

Another common failure mode is a poor alignment of timelapse images. Even
though images are within a 0.4m radius circle, there are certain scenes where a
the basis spline cannot correctly align images due to exceptionally bad parallax.
In the last row of Fig. 15 we show timelapses with poor alignment parameters,
resulting in an equally bad estimate of reflectance.

Learning to Factorize and Relight a City Supplemental Material 17

Fig. 12. We show results for applications enabled by our factorization. In the top row
we show various scenes we wish to manipulate. The middle section show these scenes
relit with a consistent lighting context but original azimuth location. This indicates
that we have disentangled sun azimuth from lighting context. In the bottom row we
show transplanting a building into the world and updating the lighting realistically.

Based on results from image congealing [3], congealing over larger sets of
images results in better chance of aligning images by smoothing the optimization
surface. Therefore two possible solutions exists to make alignment better: (1) we
can use a smaller baseline to decrease the adverse impact of parallax and (2) we
can use more images per stack to smooth the optimization surface when aligning
images.

18 Liu et al.

Fig. 13. Our factorized representation lets us copy parts of the scene descriptor and
paste them into new scenes before generating realistic-looking modified panoramas. Our
synthetically inserted brown building is seamlessly integrated into the target scene.

Fig. 14. We show a hyperlapse drive down Second Avenue, Manhattan. In the original
hyperlapse, the illumination changes frequently resulting in a jarring experience. We
show the process of fixing the illumination to make the hyperlapse weather consistent.
The full video can be found attached in the supplemental folder.

Learning to Factorize and Relight a City Supplemental Material 19

Fig. 15. We show three common failure of our model as well as whether it is associated
with a single-image or stack decomposition. In the first row we show how our decompo-
sition fails to correctly remove high-frequency shadows from reflectance like ones left by
branches. In the second row we show failures to remove transient objects like cars from
the scene descriptor. This results in the synthesis of “ghost” cars. Finally we show a
failure of our alignment module. The average images are poorly align, resulting in a
poor estimate of the average reflectance.

20 Liu et al.

References

1. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement
networks. In: Proc. Int. Conf. on Computer Vision (ICCV) (Oct 2017)

2. Hold-Geoffroy, Y., Sunkavalli, K., Hadap, S., Gambaretto, E., Lalonde, J.F.: Deep
outdoor illumination estimation. In: Proc. Computer Vision and Pattern Recognition
(CVPR) (July 2017)

3. Huang, G.B., Jain, V., Learned-Miller, E.: Unsupervised joint alignment of complex
images. In: Proc. Int. Conf. on Computer Vision (ICCV) (2007)

4. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with con-
ditional adversarial networks. Proc. Computer Vision and Pattern Recognition
(CVPR) (2016)

5. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution. In: Proc. European Conf. on Computer Vision (ECCV) (2016)

6. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. Int. Conf. on
Learning Representations (12 2014)

7. Li, Z., Snavely, N.: Learning intrinsic image decomposition from watching the world.
In: Proc. Computer Vision and Pattern Recognition (CVPR) (2018)

8. Martin-Brualla, R., Gallup, D., Seitz, S.M.: Time-lapse mining from inter-
net photos. ACM Trans. Graphics (SIGGRAPH) 34(4), 62:1–62:8 (Jul 2015).
https://doi.org/10.1145/2766903

9. Meshry, M., Goldman, D.B., Khamis, S., Hoppe, H., Pandey, R., Snavely, N.,
Martin-Brualla, R.: Neural rerendering in the wild. In: Proc. Computer Vision and
Pattern Recognition (CVPR) (2019)

10. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. In: Int. Conf. on Learning Representations (2018),
https://openreview.net/forum?id=B1QRgziT-

11. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-
adaptive normalization. In: Proc. Computer Vision and Pattern Recognition (CVPR)
(2019)

12. Sunkavalli, K., Matusik, W., Pfister, H., Rusinkiewicz, S.: Factored time-lapse video.
In: ACM Trans. Graphics (SIGGRAPH). SIGGRAPH ’07, ACM, New York, NY,
USA (2007). https://doi.org/10.1145/1275808.1276504

13. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution
image synthesis and semantic manipulation with conditional gans. In: Proc. Com-
puter Vision and Pattern Recognition (CVPR) (2018)

14. Weiss, Y.: Deriving intrinsic images from image sequences. In: Proc. Int. Conf. on
Computer Vision (ICCV) (2001)

15. Zhang, R.: Making convolutional networks shift-invariant again. In: Proc. Int. Conf.
on Machine Learning (2019)

16. Zhou, T., Krähenbühl, P., Efros, A.A.: Learning data-driven reflectance priors for
intrinsic image decomposition. In: Proc. Int. Conf. on Computer Vision (ICCV)
(2015)

